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Abstract: The vacuum of a large-N gauge field on a p-torus has a spatial stress tensor

with tension along the direction of smallest periodicity and equal pressures (but p times

smaller in magnitude) along the other directions, assuming an AdS/CFT correspondence

and a refined form of the Horowitz-Myers positive-energy conjecture. For infinite N , the

vacuum exhibits a phase transition when the lengths of the two shortest periodicities cross.

A comparison is made with the Surya-Schleich-Witt phase transition at finite temperature.

A zero-loop approximation is also given for large but finite N .
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Horowitz and Myers [1] have noted that one can calculate the Casimir energy density

of a nonsupersymmetric Yang-Mills gauge theory on S1 ×Rp, in the limit that the number

N of gauge fields is made very large, by using the AdS/CFT correspondence [2 – 4] and the

supergravity energy of what they call the AdS soliton. Here I note that if one takes the

gauge theory to be defined on R1×T p, the product of a temporal R1 with a spatial p-torus

(the product of p S1 circles), then in the large-N limit one gets vacuum phase transitions

(e.g., in the stress tensor) when one varies the lengths of the S1’s so that the values of

the two shortest lengths cross. For a thermal state of the gauge theory at temperature T ,

which corresponds to making the Euclidean time periodic with period β = 1/T , so that

the theory is defined on a Euclidean (p + 1)-torus, there is an additional phase transition,

found previously by Surya, Schleich, and Witt [5], when β crosses the length of the shortest

other period.

The AdS soliton metric in p + 2 spacetime dimensions is [1]

ds2 =
r2

ℓ2

[(

1 −
rp+1

0

rp+1

)

dτ2 +

p−1
∑

i=1

(dxi)2 − dt2

]

+

(

1 −
rp+1

0

rp+1

)−1

ℓ2

r2
dr2, (1)

where the radial variable r ranges from r0 to ∞, and where to avoid a conical singularity

at r = r0, one must make τ periodic with period βτ = 4πℓ2/(p + 1)r0. (I have added the

subscript τ to what Horowitz and Myers call simply β in order to distinguish that period,

of the spatial coordinate τ , from my use of β to denote the period of the Euclidean time

coordinate when I consider a thermal state.)

This soliton, an Einstein metric with cosmological constant Λ = −p(p+1)/(2ℓ2) that is

negative, represents a solution for a supergravity theory in p+2 dimensions in the classical

limit ℓ ≫ ℓPlanck. By the AdS/CFT correspondence, it should be dual to a suitable state

(e.g., the vacuum) of a large-N gauge theory defined on the conformal boundary of the

AdS soliton metric, at r = ∞.

Horowitz and Myers [1] considered the case in which τ was periodic but the other

spatial coordinates at constant r, the p xi’s, were not (except when they normalized the

energy, which is infinite for unbounded xi’s). Then with t also unbounded, the dual gauge

theory was defined on S1 × Rp (with spatial sections S1 × Rp−1). However, I shall take

the case in which each xi is periodic, with period Li for i = 1, · · · , p − 1. For symmetry of

notation, I shall also define xp = τ and Lp = βτ , so each of the p spatial coordinates for

the gauge theory has period Li, but now with i = 1, · · · , p. Thus the spatial part of the

manifold on which the gauge theory lives is the product of p S1’s, the p-torus T p. I shall

also take the case in which all of the fermionic fields are antiperiodic around each of the

S1’s, so that in principle any of the S1’s could have length shrunk to zero at some locations

in the metric of the dual supergravity theory (and hence representing a rotation by 2π at

those locations, reversing the sign of fermionic fields).

Then in the case in which one is interested in the Lorentzian gauge theory (so that the

Lorentzian time t has infinite range, giving an R1 factor), the total spacetime topology on

which the gauge theory lives is R1 × T p. Up to an arbitrary (smooth, positive) conformal

factor, the metric of this spacetime is what is obtained from the soliton metric (1) by
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dropping the dr2 part, multiplying by a conformal factor l2/r2, and taking the limit r → ∞:

ds2 = −dt2 +

p−1
∑

i=1

(dxi)2 + dτ2 = −dt2 +

p
∑

i=1

(dxi)2. (2)

This metric is of course flat, and the only nontrivial continuous parameters are the p lengths

Li of the S1 factors. Since the gauge theory in this p + 1 dimensional spacetime, dual to

the supergravity theory in p + 2 dimensions, is conformally invariant, only the p− 1 ratios

of the lengths are physically relevant for conformally invariant properties of that theory.

When the lengths Li are all multiplied by the same positive number c, the conformally

invariant gauge theory has the same physical form. Since its energy E has the dimension

of inverse length, it would be multiplied by 1/c under this scale transformation. Thus

the actual value of the energy of a CFT is not invariant under conformal transformations.

However, when a representative of the conformal class of metrics for the CFT is stationary,

as is the metric (2), and when any other external field coupling to the CFT is also stationary

(none in our example), then in that representative metric the energy is well defined and

simply scales as 1/c if the lengths in the metric are scaled by c under a constant conformal

factor. Therefore, if the energy is multiplied by a length scale taken from the metric, the

resulting product is invariant under the scaling.

In our case we can use the spatial volume to define a length scale L. If we follow

Horowitz and Myers [1] to define Vp−1 to be the volume of their p − 1 xi’s, i.e., Vp−1 =

L1L2 · · ·Lp−1, we can analogously define Vp to be the volume of our p xi’s, i.e.,

Vp ≡ Lp = L1L2 · · ·Lp−1Lp = Vp−1βτ , (3)

where the length scale L is thus defined to be the geometric mean of the p spatial period-

icities. Then the scale-invariant quantity that reduces to the energy E when the spatial

volume is scaled to unity is

ǫ = EL ≡ EV 1/p
p , (4)

which I shall call the scale-invariant energy.

Now by the AdS/CFT correspondence, one can equate the energy of the CFT, for

some choice of scale, with the energy of the supergravity solution at the same choice of

scale. Using eq. (3.16) of Horowitz and Myers [1] for the latter, one can readily calculate

that the scale-invariant energy is

ǫ = −Cp

(

L

βτ

)p+1

= −Cp

(

L

Lp

)p+1

, (5)

Cp ≡

(

4π

p + 1

)p+1 ℓ p

16πGp+2

=
1

4(p + 1)Gp+2

(

8π2p

(p + 1)(−Λ)

)

p

2

. (6)

This value comes from using the metric (1), in which it is the special coordinate xp = τ ,

with coordinate periodicity Lp = βτ , that has a proper length whose ratio with the proper

length of each other p − 1 xi changes with r and goes to zero at r = r0. In particular,

the p − 1 periodic xi’s for i = 1, · · · , p − 1 give circles whose proper lengths change in the
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same ratio as r is reduced from ∞ to r0, and whose proper lengths never go to zero, but

the proper length of the circle represented by xp changes at a different rate with r and

goes to zero at the nut [6] at r = r0, a regular center of polar coordinates for the (r, xp)

two-surface.

If one filled in the conformal boundary, with metric conformal to (2), with a metric

analogous to (1) but having a coordinate different from τ = xp, say xk instead, having a

nut at r = r0, then one would get a supergravity solution with

ǫ = ǫk = −Cp

(

L

Lk

)p+1

. (7)

For Lk 6= Lp, this would correspond to a different state of the gauge theory.

Thus we see that if all of the Li’s are different, we get p different AdS solitons that

can fill in the conformal boundary with representative metric (2), one for each choice of

the spatial coordinate xk that is chosen to have the nut in the interior. Each of these

supergravity configurations has a different scale-invariant energy given by eq. (7).

If we chose an AdS soliton corresponding to an Lk that is not the shortest circle, then

the scale-invariant energy would not be the minimum possible value for that conformal

boundary. This would be a (rather trivial) counterexample to the positive-energy conjec-

tures of Horowitz and Myers [1], assuming that one measured the energy relative to the

base metric given by their eq. (4.1) and had one of their xi’s (without the nut) having

a shorter period than their τ that does have the nut. (Of course, this would not be a

counterexample if it is implicitly assumed that the xi’s have infinite range, as Horowitz

and Myers [1] seem to do except when they assume a finite Vp−1 in order to get a finite E.)

In any case, one could trivially rephrase the Horowitz-Myers conjectures to include the

assumption that the base metric has the period of the τ coordinate shorter than the period

of any of the other spatial coordinates transverse to r. If these slightly revised conjectures

are true, as I shall assume here, then the lowest scale-invariant energy is the ǫk given by

eq. (7) with Lk chosen to be the shortest S1 in the boundary metric (2). This would then

be the scale-invariant ground state energy of the gauge theory:

ǫ0 = min
k

ǫk = −Cp

(

L

min Lk

)p+1

. (8)

If we divide this by L, we get that the ground state energy of the gauge field in the flat

spatial p-torus of edge lengths Li is

E0 = −Cp
L1L2 · · ·Lk−1Lk+1 · · ·Lp−1Lp

Lp
k

, (9)

where Lk is the minimum of the Li’s.

From dividing this energy by the volume, and from differentiating the energy with

respect to each of the edge lengths and dividing by the transverse area, one can easily

get that the stress-energy tensor has only the following nonzero components, in the flat

coordinate basis used in the metric (2), and with i indicating a spatial index not equal to
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the special index k that labels the shortest Lk (no sum on the repeated indices):

T00 = −
Cp

Lp+1

k

, (10)

Tii = +
Cp

Lp+1

k

, (11)

Tkk = −
Cp p

Lp+1

k

. (12)

Thus we see that the energy density is negative, there is a positive pressure of that

same magnitude in each of the periodic directions except for the shortest one, and there

is a negative pressure (tension) of p times that magnitude in the direction of the shortest

periodic direction. As expected, the trace of the stress-energy tensor is zero.

This dependence on the spatial periodicities of the stress-energy tensor of the large-N

gauge theory vacuum state in the spatial p-torus gives a vacuum phase transition whenever

the periodicities are changed so that the direction of the shortest periodicity is switched.

The energy density, T00, is continuous but has a discontinuity in its derivative with respect

to the length that either was or becomes the shortest. However, the pressures in the two

directions that correspond to what was and what becomes the shortest periodicity have

discontinuities, suddenly interchanging with the interchange of shortest lengths. The strong

coupling apparently makes the gauge theory vacuum highly sensitive to the periodicity in

the two shortest directions when they become equal.

This sudden change in the stress tensor of the strongly coupled gauge field vacuum is

not similar to the smooth change in the Casimir stress tensor for a weakly coupled gauge

field, so it is another feature of the difference between strong and weak coupling, besides

the famous factor of 3/4 (for p = 3) [7].

Of course, for large but finite N , there would be no real discontinuity in the stress

tensor, and no real phase transition for this system that is effectively in a finite cavity

(with periodic boundary conditions for the bosons and antiperiodic boundary conditions

for the fermions). However, for large N , the stress tensor would change rapidly with the

two shortest periods when they are crossed, as we shall discuss later.

When one goes from the vacuum state to the thermal state at a finite temperature

T for the strongly coupled gauge theory, this is equivalent to making the Euclidean time

periodic with period β = 1/T , so the Euclidean metric for the gauge field would simply be

the p + 1 torus T p+1 with edge lengths β and the p Li’s. In this case a slight modification

of the analysis above would predict that there should be a thermal phase transition when

β drops below Lk, the shortest other periodicity. This is indeed what has been found [5].

For T < 1/Lk, [5] find one has a confinement phase, with the expectation value of the

temporal Wilson loop operator being zero (in the large-N limit). The expectation value of

the spatial Wilson loops along the spatial S1’s would be zero for all but the shortest S1,

which would have a nonzero expectation value for its Wilson loop. By the analysis above,

using the AdS/CFT correspondence with only the purely classical supergravity solutions,

one finds that the gauge field stress-energy tensor has the form given by eqs. (10)–(12),
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which thus does not change with temperature so long as it is below the transition temper-

ature 1/Lk. (This of course ignores the correspondence to the small effect of thermal field

fluctuations about the classical supergravity solution.) Thus the strongly coupled gauge

field is effectively frozen in its confined ground state, with very low specific heat (which

would be slightly nonzero from the correspondence with the thermal field fluctuations about

the supergravity solution).

For T > 1/Lk, [5] find one has a deconfinement phase, with the expectation value of

the temporal Wilson loop operator being nonzero. Then the expectation value of all of

the Wilson loops over the spatial S1’s would be zero (in the large-N limit). By a trivial

extension of the analysis above, one finds that the gauge field stress-energy has the form

T00 = +Cp p T p+1, (13)

Tii = Tkk = +Cp T p+1. (14)

(Here T p+1 denotes the temperature raised to the power that is the dimension of the

spacetime in which the gauge theory is defined, not a p + 1 torus as has been my previous

use of this expression.)

This is exactly the same as the large-volume limit of a thermal gas with 3/4 (for p = 3)

the number of degrees of freedom as the weak coupling limit of the large-N gauge field [7].

However, I emphasize that this factor of 3/4 really applies only when β ≪ Lk. When β

is comparable to Lk, the true thermal-Casimir stress-energy tensor of the weakly coupled

gauge field would be expected to change slowly with the ratios of the periodicities, and

not suddenly as its components do in eqs. (10)–(14) for large N . Thus it is not simply the

factor of 3/4 that differs between the weak and strong coupling limits, but also the more

detailed dependence on the periodicities.

It may be of interest to give an improved approximation for the stress-energy tensor

for large but finite N when the shortest periodicities are nearly equal, which I shall do by

using the zero-loop approximation for the partition function for the supergravity theory

that is dual to the gauge theory.

To shorten the expressions, I shall use n ≡ p + 1, the dimension of the spacetime in

which the conformal gauge theory lives, which in the thermal case (with periodic Euclidean

time) is the flat Euclidean n-torus with orthogonal periods and with periodicity lengths

Lα for α = 0, . . . , n − 1, with L0 = β and with the n − 1 other Li’s being as before. For

brevity, also define the n-dimensional volume of the Euclidean spacetime to be

Vn ≡ Vp+1 = βVp = L0L1 · · ·Lp−1Lp, (15)

and use

C ≡ Cp ≡ Cn−1 ≡

(

4π

n

)n ℓn−1

16πGn+1

=
1

4nGn+1

(

8π2(n − 1)

−nΛ

)

n−1

2

. (16)

From [1] one can see that for n = p + 1 = 4, C = (π2/8)N2, and from some examples of [2]

for n = 3 and n = 6, I would conjecture that for general n, C ∝ Nn/2.

– 5 –



J
H
E
P
0
9
(
2
0
0
8
)
0
3
7

Now, as discussed above, there are n classical Euclidean supergravity solutions with

this Euclidean n-torus as their conformal boundary, one for each choice of one of the n

S1’s to be given a nut inside, at which the periodicity length shrinks to zero to form, along

with the radial coordinate r, the center of a two-dimensional disk. If it is the coordinate γ

that has the nut, then the action of that solution is

Iγ = −C
Vn

Ln
γ

. (17)

Then in the zero-loop approximation, this classical solution makes a contribution to the

partition function of

Zγ = e−Iγ = exp

(

CVn

Ln
γ

)

. (18)

Assuming the Horowitz-Myers conjectures [1] in the form revised above, which imply that

these supergravity configurations dominate the path integral, one has that the total zero-

loop partition function is

Z =
n−1
∑

γ=0

Zγ =
n−1
∑

γ=0

exp

(

CVn

Ln
γ

)

. (19)

One can then say that each of the n classical supergravity solutions has probability

Pγ =
Zγ

Z
= exp

(

CVn

Ln
γ

)

/
n−1
∑

δ=0

exp

(

CVn

Ln
δ

)

. (20)

Now using the toroidal symmetry of the metric and differentiating the partition func-

tion by the nontrivial parameters of the metric (the periodicity lengths Lγ) gives the

following stress-energy tensor (to zero-loop approximation, which is good only for C ≫ 1,

and which ignores the correspondence to the thermal field fluctuations in the dual super-

gravity theory and other similar effects that would show up in a one-loop calculation for

that theory):

Tα
β =

n−1
∑

γ=0

Pγ
C

Ln
γ

(

δα
β − nδα

γ δγ
β

)

, (21)

where the Einstein summation convention is not used in the last term.

Thus we see that for finite N , and hence for finite C (which goes as a power of N ,

with the power apparently being half the spacetime dimension n in which the gauge theory

lives), there are no discontinuities in the stress-energy tensor and no true phase transitions,

which agrees with what one expects on general grounds for a finite system. However, for

C ≫ 1, the stress-energy tensor changes very rapidly with the two shortest periodicities

when they are very nearly equal.

For example, when the inverse temperature, β ≡ 1/T ≡ L0, is very nearly the same as

the shortest spatial periodicity, say Lk, and when all the other periodicities are significantly

longer, then only

P0 ≈
1

2

[

1 + tanh

(

CVn

2βn
−

CVn

2Ln
k

)]

(22)
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and

Pk ≈
1

2

[

1 − tanh

(

CVn

2βn
−

CVn

2Ln
k

)]

(23)

are significantly different from zero, and when they are both significantly different from

zero, they change very rapidly with β and with Lk. When one integrates T00 over the

spatial volume Vn−1 = Vn/β, one gets, for β ≈ Lk,

E ≈
CVn−1

Ln
k

(nP0 − 1) = −E0(nP0 − 1), (24)

where the negative E0, given by eq. (9), is the ground state energy when the inverse

temperature β is taken to infinity. Then one can calculate that the specific heat is

dE

dT
≈ P0Pk

(

nCVn−1

Ln−1

k

)2

= P0Pk(−nLkE0)
2 = P0Pkn

2C2

(

L

min Lk

)2n−2

. (25)

Since C ≫ 1, and since L, the geometric mean of all of the n− 1 spatial periodicities,

is larger than min Lk (and can be much larger), the specific heat can be very large when

P0 and Pk are both comparable to 1/2. Therefore, although there is not literally a phase

transition for finite N (and hence finite C) and for finite Vn−1/L
n−1

k , the stress-energy

tensor can change very rapidly with the temperature for large finite values of one or both

of these quantities.

Thus we can conclude that in the limit of infinite N , a conformally invariant gauge

theory on a flat torus (with antiperiodic boundary conditions for the fermions), dual to

a supergravity theory in one higher dimension, has vacuum and thermal states that are

infinitely sensitive to the two shortest periodicities of the torus when they are equal, giving a

phase transition when the two shortest lengths are interchanged. This is analogous to what

was previously found [5] for the thermal phase transition when the inverse temperature

crosses the shortest spatial periodicity. The phase transition involves a discontinuity in the

stress-energy tensor, in the components along the two shortest periodicities (either both

spatial, or one being the Euclidean time periodicity for the thermal phase transition).

I was introduced to the AdS soliton by Sumati Surya and Eric Woolgar and had

valuable discussions about it with them. This work was supported in part by the Natural

Sciences and Engineering Research Council of Canada.
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